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Abstract

Personalized cardiac models are crucial intervention
tools for a multitude of cardiac health issues. As car-
diac simulations become more complex and expensive, ma-
chine learning (ML) models demonstrated the potential to
enable efficient model personalization and cardiac tissue
parameter estimation. A common approach depends on
“globally” accurate ML models trained with large simu-
lation data to predict tissue parameters. Such a global ML
model is not only expensive to train, but its success also
relies on the assumption that real-world data would fall
within the range of the training data. We establish a novel
active-learning method for cardiac parameter estimation
by steering the training of the ML model towards the un-
known region of interest in the parameter space.

1. Introduction

Personalized cardiac models plays a pivotal role for de-
signing effective intervention strategies for multiple car-
diac problems [1-3]. In recent years, there have been de-
velopment in the area of machine learning based surrogate
models [4-6] that provide accurate estimation of various
cardiac parameters. Such models are assumed to be “’glob-
ally” accurate after training on a large amount of labelled
data. These models, however, pose two important limita-
tion. First, acquisition of large amount of labelled data to
train the model is very expensive. Second, parameter esti-
mation using such models inherently assume that the real
world data would fall under the scope of training data used
to acquire the “global” perspective of cardiac mechanism.

In this paper, we propose a novel active-learning method
for cardiac parameter estimation that tackle these limita-
tions. We train a machine learning model using limited
set of labelled data, where the generation of training data
is driven by the predictive uncertainty of an iteratively
improved Gaussian Process (GP) model. This process is
driven with a particular focus on guiding the training pro-
cess towards the unknown region of interest in parameter
space. By doing so, we are able to train a model with lim-
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Figure 1. Block diagram of of the proposed method.

ited labelled data but covering the unknown distribution of
the test data.

We evaluated our method on healthy heart data from
MedalCare-XL dataset [7]. The dataset includes 16900
data from 13 patients equally distributed into the 8 groups
(healthy control and 7 cardiac pathologies) [7]. Out of the
entire data size, we use 1000 data for our experiments.
Each data has 20 dimensional parameter space that rep-
resents important concepts like the activation location, ac-
tion potential duration, etc. The data also includes 12-lead
ECG data lasting 10s sampled at 500 Hz. We compared our
method with a MLP based “global” model trained on large
training set to learn the parameters from the input ECGs.
The results demonstrate an improved accuracy of param-
eter estimation in our method compared to a global-ML
model that too using limited labelled training data size.

2. Method

The ECG signals are considered as a function of 20 car-
diac tissue parameters which represent the pacing site on
the left and right ventricles, action potential duration pa-
rameters, etc.
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y = M(61,62,...,02) (D

where y is the ECG signal, M is the simulation model
and {0;}29, are the cardiac tissue parameters. For ease of
notation, we will represent the vector of 20 cardiac param-
eters as 0

Our goal is to find the parameters 6 such that it mini-
mizes the error between the ground truth ECG y and the
model M i.e.:

6 = argmin E = argmin ||y — M (8)||? )
0 o

The schematic representation of the proposed active
learning method is shown in Figure 1. Rather than training
a machine learning model passively using a large amount
of input-output pairs of # and y, we use active learning to
train for the MSE. The active learning process begins with
training a Gaussian Process (GP) model on an initial set of
labelled data. Next, the predictive uncertainty of the MSE,
as inferred from the GP model, is exploited to identify the
new parameters which are added back to the labelled pool.
The GP is then retrained and the process is repeated until
the error estimate converges. By adding back the estimates
along the way, we constantly explore the unknown region
of interest and allow the model to refine on limited data in
comparison to requirement of large labelled data upfront.

2.1. GP Training

Consider L = (6;,;)\%! be the initial labeled data
where 6 represents the tissue parameters, y represents the
ECG signal and |L] is the initial labelled data size. Let
T = (Otest,tiest) be the test data where for given yies
ECG signal we need to estimate the parameter as close as
possible to the ground truth 0.

We initially train the GP f(z) on the labelled data L to
learn the relation between the cardiac parameters and the
MSE between the ground truth and prediction as depicted
in 2. We utilize a zero-mean function for the GP mean
function, as we lack prior knowledge of the objective func-
tion [8]. As for the GP’s covariance function, we opt for
the anisotropic Matérn 5/2 covariance function [§]

K(0;,0;) = o*exp(—V/5d(6;,0;)(1 + V5
d(0:,0;) + 5/3d*(6;,0,)) (3)

where, d?(0;,6;) = (0; — ;)T A (0; — 0;) with A repre-
senting diagonal matrix and o is the function amplitude.
The diagonal elements of A corresponds to the inverse of
squared characteristic length scale along the dimensions of

6.

2.2. Data Acquisition

We acquire new data actively by using Bayesian Opti-
mization which consists of two steps. First, we begin with
a sample point of parameter 6.4; within the bounds of the
parameter space 6. The initial trained GP model provides
us with an estimate of uncertainty in the error £. We then
optimize for the cardiac parameters that maximization our
acquisition function defined as:

(o) — E*
o(0)
p(0) — B

a(6) )

EI(9) = (u(0) — E)®( ) )

+o(0)¢(

where, ET is the maximum of the objective function
obtained so far, ©(f) and o(#) are the mean and stan-
dard deviation of the error E respectively, and ¢ and ® are
density function and CDF of the standard normal distribu-
tion respectively. Here, the maximization of the first term
promotes exploitation of high predictive GP mean regions
whereas the maximization of the second term promotes ex-
ploration of uncertain regions. The estimated parameter ¢
and the error E' are added back to the labelled set and the
GP is retrained until the error estimate converges.

3. Experiments and Results

3.1. Setup

Experiments were performed on 1000 healthy sinus
heart data from MedalCare-XL dataset[7]. Each data point
includes 20 cardiac parameters which represented activa-
tion site on left ventricles (anterior endocardium, posterior
endocardium and septum) and right ventricle in UVC coor-
dinate, and action potential duration parameters. Each data
also has a 12-lead ECG signal of 10s duration sampled at
500 Hz. All of the data was split into train data and test
data. The train data was obtained by considering all data
points that lied in intersection of 70% of apicobasal height
and 70% rotation of the heart and the rest was considered
as test data.

The proposed method is compared with a passive
”global” neural network (MLP) model which takes 12-lead
ECG as input and cardiac parameters as the output. Each
ECG signal had 451 time steps thus the input to the MLP is
a 5412 dimensional signal. The structure of the model was
composed as 5412 - 2048 - 1024 - 512 - 20 with a batch
normalization and LeakyReLU signal after each layer. The
network was trained with all of the training data for 300
epochs and evaluated on the test-data.
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Figure 2. Estimation of activation sites on left ventricle on two test data (test data identifier O and 1) on proposed method
(A) and passive MLP model (B). The red, green and magenta points represent activation site at anterior endocardium,
posterior endocardium and septum respectively. The larger sizes on same color with "p’ added to identifier indicate the

respective predictions from parameter estimation.

pl p2 p3 p4 pS po p7 p8 p9 | pl0
Active Learning | 0.05 | 0.14 | 0.03 | 0.05 | 0.4 | 0.28 | 0.56 | 0.2 | 0.29 | 0.79
Passive MLP | 0.75 | 0.58 | 0.26 | 0.69 | 1.25 | 0.75 14 ] 1.1]0.71|322

pll | pl12 | p13 | pl4 | pI5 | pl6 | p17 | p18 | p19 | p20
Active Learning | 1.05 | 0.37 | 0.57 | 0.34 | 0.18 | 0.42 | 1.02 | 0.24 | 0.24 | 1.21
Passive MLP | 2.1 | 1.71 | 2.1 | 0.84 | 092 | 1.91 | 331 | 0.82 | 09 | 2.73

Table 1. Mean relative error over all test data across the 20
dimensional parameter space for proposed method (Active
learning) and passive/global model (MLP)

3.2. Results

The proposed method was initially trained on 40 la-
belled data followed by parameter estimation step for 100
epochs. During the process a total of 42 points were added
to labelled data. In comparison, the passive model was
trained with all of the training data (i.e. 300).

The mean relative error for estimated parameter of test-
data are shown in Table 1. The table shows comparison

of relative error of our-proposed method (Active Learning)
with the global model across all 20 parameters. The results
show that our proposed method has a low relative error on
prediction of cardiac parameter across all dimensions in
comparison to the “’global” model. This shows improved
parameter estimation capability of active learning driven
model in compare to the globally trained model.

The visualization of activation site on the left ventricle
(anterior endocardium - red, posterior endocardium - green
and septum - magenta) are shown in Figure 2. Figure 2A
shows active learning based method was able to exactly
predict the activation site (shown by the overlap of ground
truth and prediction activation site). The global model, de-
spite being trained with a larger training size, was not able
to capture the activation site as shown inf Figure 2B.
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4. Discussion

The quantitative and qualitative results above show the
advantage of our proposed method in comparison to using
a surrogate trained on a large labelled data. We demon-
strate the benefit of our method in two ways. First, in terms
of the number of labelled data required. The global model
was trained on entire training data to learn the relation from
ECG to cardiac parameters but despite such large dataset
the results showed a lacking performance. On the other
hand, the active learning model was trained total of 82 data
points and yet was able to estimate parameters more accu-
rately. This is particularly due to the second benefit of our
method i.e. intelligent search of data to be labelled. During
active learning step, we use the uncertainty in the error be-
tween the ground truth ECG and its prediction to search for
data to be labelled in unknown region in parameter space.
This intelligent steering of simulation to generate next data
to be labelled helps cover a larger scope of parameter space
and updates the model with fewer data than used in the
other surrogates.

5. Conclusion

We propose a cardiac tissue parameter estimation frame-
work for personalized model using an active-learning ap-
proach by exploiting the predictive uncertainty. Experi-
ments showed that the performance of the active learn-
ing based parameter estimation model outperformed ma-
chine learning surrogate on both the number of training
data required as well as the relative error performance. We
showed that exploiting predictive uncertainty allows us to
intelligently select the data required to update the model
and improve estimation of the parameters circumventing
the requirement of large number of training data which is
both expensive and unavailable in almost all situations. Fu-
ture works will examine this observation in a larger cohort
as well as data with cardiac problems.

Acknowledgments

This study was supported by funding provided by Na-
tional Institutes of Health (NIH)/National Heart, Lung,
and Blood Institute (NHLBI) award RO1HL145590,
and National Science Foundation (NSF) award OAC-
2212548. This research was also funded by InstaTwin
grant FO999891133 from the Austrian Research Promo-
tion Agency (FFG)

References

[1] Chakshu NK, Sazonov I, Nithiarasu P. Towards enabling
a cardiovascular digital twin for human systemic circula-
tion using inverse analysis. Biomechanics and modeling in
mechanobiology 2021;20(2):449—465.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP,
Ashikaga H, Blauer JJ, Ghafoori E, Park CJ, Blake III RC,
et al. Personalized virtual-heart technology for guiding the
ablation of infarct-related ventricular tachycardia. Nature
biomedical engineering 2018;2(10):732-740.

Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas
P, Wu KC, Trayanova NA. Arrhythmia risk stratification of
patients after myocardial infarction using personalized heart
models. Nature communications 2016;7(1):11437.

Babaei H, Mendiola EA, Neelakantan S, Xiang Q, Vang A,
Dixon RA, Shah DJ, Vanderslice P, Choudhary G, Avaz-
mohammadi R. A machine learning model to estimate
myocardial stiffness from edpvr. Scientific Reports 2022;
12(1):5433.

Zhou Y, He Y, Wu J, Cui C, Chen M, Sun B. A method of pa-
rameter estimation for cardiovascular hemodynamics based
on deep learning and its application to personalize a reduced-
order model. International Journal for Numerical Methods in
Biomedical Engineering 2022;38(1):e3533.

Dhamala J, Ghimire S, Sapp JL, Hori¢ek BM, Wang
L. High-dimensional bayesian optimization of personal-
ized cardiac model parameters via an embedded generative
model. In Medical Image Computing and Computer Assisted
Intervention-MICCALI 2018: 21st International Conference,
Granada, Spain, September 16-20, 2018, Proceedings, Part
II 11. Springer, 2018; 499-507.

Gillette K, Gsell MA, Nagel C, Bender J, Winkler B,
Williams SE, Bir M, Schiffter T, Dossel O, Plank G, et al.
Medalcare-x1: 16,900 healthy and pathological 12 lead ecgs
obtained through electrophysiological simulations. arXiv
preprint arXiv221115997 2022;.

Rasmussen CE. Gaussian processes for machine learning
2006;.

Address for correspondence:

Pradeep Bajracharya
1 Lomb Memorial Drive, Rochester, NY-14623, USA
pb8294 @rit.edu

Page 4



